Towards Merging Recursion and Comonads
نویسنده
چکیده
Comonads are mathematical structures that account naturally for eeects that derive from the context in which a program is executed. This paper reports ongoing work on the interaction between recursion and comonads. Two applications are shown that naturally lead to versions of a comonadic fold operator on the product comonad. Both versions capture functions that require extra arguments for their computation and are related with the notion of strong datatype.
منابع مشابه
Recursive coalgebras from comonads
We discuss Osius’s [22] concept of a recursive coalgebra of a functor from the perspective of programming semantics and give some new sufficient conditions for the recursiveness of a functor-coalgebra that are based on comonads, comonad-coalgebras and distributive laws.
متن کاملUnifying Recursion Schemes
Folds over inductive datatypes are well understood and widely used. In their plain form, they are quite restricted; but many disparate generalisations have been proposed that enjoy similar calculational benefits. There have also been attempts to unify the various generalisations: two prominent such unifications are the ‘recursion schemes from comonads’ of Uustalu, Vene and Pardo, and our own ‘a...
متن کاملRecursion Schemes From
Within the setting of the categorical approach to total functional programming, we introduce a \many-in-one" recursion scheme that neatly uniies a variety of seemingly diverging strengthenings of the basic recursion scheme of iteration. The new scheme is doubly generic: in addition to being parametric in a functor capturing the signature of an inductive type, it is also parametric in a comonad ...
متن کاملLinear Exponential Comonads without Symmetry
The notion of linear exponential comonads on symmetric monoidal categories has been used for modelling the exponential modality of linear logic. In this paper we introduce linear exponential comonads on general (possibly non-symmetric) monoidal categories, and show some basic results on them.
متن کاملCoherence for monoidal monads and comonads
The goal of this paper is to prove coherence results with respect to relational graphs for monoidal monads and comonads, i.e. monads and comonads in a monoidal category such that the endofunctor of the monad or comonad is a monoidal functor (this means that it preserves the monoidal structure up to a natural transformation that need not be an isomorphism). These results are proved first in the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000